作者单位
摘要
1 燕山大学 1. 信息科学与工程学院
2 2. 河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004
设计了一种基于阿基米德螺线的新型螺旋光子晶体光纤, 该光纤以二氧化硅为基底材料, 包层由24个螺旋臂组成, 每个螺旋臂包含11个小空气孔, 纤芯设有大空气孔, 包层与纤芯中间的环形区域用于传输轨道角动量模式。该结构在1300~1800nm波段上可支持22种轨道角动量模式稳定传输, 在1550nm波长下, 有效折射率差最高可达 2.89×10-3, 色散系数最低可达 66.4ps/(nm·km), 非线性系数最低可达2.17W-1·km-1, 且1500~1600nm 波段上的色散值变化均小于15.15ps/(nm·km)。此螺旋光子晶体光纤不仅结构简单, 且具有低非线性、色散平坦的性能, 为螺旋光子晶体光纤的设计提供了思路。
光纤光学 轨道角动量 光子晶体光纤 螺旋排列 色散平坦 fiber optics orbital angular momentum photonic crystal fiber spiral arrangement flat dispersion 
半导体光电
2022, 43(2): 347
作者单位
摘要
1 燕山大学河北省测试计量技术及仪器重点实验室,亚稳材料科学与技术国家重点实验室, 河北 秦皇岛 066004
2 河北科技师范学院物理系, 河北 秦皇岛 066004
利用多极法对光子晶体光纤的色散特性进行了模拟,通过结构参数的精确设计,得到了具有三个零色散波长的单模光纤,获得了色散值极低的超平坦色散曲线.对三个零色散波长光子晶体光纤特殊的相位匹配特性进行了研究,在不同光纤结构参数下,得到了相位匹配波长随抽运波长及抽运功率的变化规律,分析了不同色散曲线对应的相位匹配波长特点.三个零色散波长光纤能实现两个反常色散区之间光孤子的高效波长变换,可以获得6个新的四波混频相位匹配波长,产生更多光子对,为高效、多波长四波混频的产生及超连续谱的研究提供了新的物理环境.
光纤光学 光子晶体光纤 色散 相位匹配 四波混频 
光学学报
2015, 35(9): 0906007
Author Affiliations
Abstract
1 Laser Institute of Science College, Beijing Jiaotong University, Beijing 100044, China
2 Measurement Technology and Instrumentation Key Lab of Hebei Province, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
3 College of Physics and Chemistry, Hebei Normal University of Science ?? Technology, Qinhuangdao 066004, China
The effective index of the cladding fundamental space-filling mode in photonic crystal fiber (PCF) is simulated by the effective index method. The variation of the effective index with the structure parameters of the fiber is achieved. For the first time, the relations of the V parameter of Yb3+-doped PCF with the refractive index of core and the structure parameters of the fiber are provided. The single-mode characteristics of large-core Yb3+-doped photonic crystal fibers with 7 and 19 missing air holes in the core are analyzed. The large-core single-mode Yb3+-doped photonic crystal fibers with core diameters of 50 μm, 100 μm and 150 μm are designed. The results provide theory instruction for the design and fabrication of fiber.
光电子快报(英文版)
2012, 8(3): 212
作者单位
摘要
1 燕山大学 信息科学与工程学院, 河北 秦皇岛 066004
2 东北大学秦皇岛分校, 河北 秦皇岛 066004
设计了一种宽带色散补偿光子晶体光纤,此光子晶体光纤在整个C波段具有较大的负色散值,且其色散斜率值均为负值。通过合理选取光子晶体光纤的层数和孔间距,同时优化各层的空气孔直径大小,分别设计了在1550nm附近的色散值为-425、-440和-400ps·km-1·nm-1;且色散斜率分别为-1.49、-4.31和-8.59ps·km-1·nm-2的宽带色散补偿光子晶体光纤。可以分别实现与G.652和G.655光纤的卡帕值和相对色散斜率相匹配,具有较好的宽带色散补偿能力。
光纤光学 光子晶体光纤 色散补偿 多极法 fiber optics photonic crystal fiber dispersion compensating multipole method 
半导体光电
2011, 32(2): 208
Author Affiliations
Abstract
1 Institute of Infrared Optical Fibres and Sensors, Yanshan University, Qinhuangdao 066004, China
2 Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
When using normalized dispersion method for the dispersion design of photonic crystal fibers (PCFs), it is vital that the group velocity dispersion of PCF can be seen as the sum of geometrical dispersion and material dispersion. However, the error induced by this way of calculation will deteriorate the final results. Taking 5 ps/(km·nm) and 5% as absolute error and relative error limits, respectively, the structure parameter boundaries of PCFs about when separating total dispersion into geometrical and material components is valid are provided for wavelength shorter than 1700 nm. By using these two criteria together, it is adequate to evaluate the simulated dispersion of PCFs when normalized dispersion method is employed.
光子晶体光纤 无量纲化色散 光纤设计 060.2310 Fiber optics 060.5295 Photonic crystal fibers 060.4005 Microstructured fibers 
Chinese Optics Letters
2009, 7(9): 768
Author Affiliations
Abstract
Institute of Infrared Optical Fibers and Sensors, Yanshan University, Qinhuangdao 066004
A simple method is presented to measure the transmission spectrum of hollow-core microstructured fibers in the visible, near-infrared, and mid-infrared regions. The plane wave expansion method is applied to analyze the photonic bandgaps of hollow-core microstructured fibers. The experimental results indicate that there are several strong transmission bands in the near-infrared and mid-infrared region, but hardly any transmission phenomena in the visible region, which shows that there are some bandgaps in near-infrared wavelength. The experimental results are consistent with the numerically simulative results using a plane wave expansion method.
微结构光纤 光子带隙 透射谱 平面波展开法 060.2270 Fiber characterization 060.2300 Fiber measurements 060.2400 Fiber properties 
Chinese Optics Letters
2006, 4(10): 566

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!